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Abstract

Using Galois theory of functional equations, we give a new proof of the main result of the paper “Tran-
scendental transcendency of certain functions of Poincaré” by J.F. Ritt, on the differential transcendence of
the solutions of the functional equation R(y(t)) = y(qt), where R(t) ∈ C(t) verifies R(0) = 0, R′(0) = q ∈ C,
with |q| > 1. We also give a partial result in the case of an algebraic function R.
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1 Introduction

We fix a rational function R, with complex coefficients, such that R(0) = 0, R′(0) = q ∈ C, with |q| > 1. To
linearize the rational map R at 0, one has to solve the functional equation

(1.1) R(σ(t)) = σ(qt).

It means that, up to a conjugation by σ, the rational function R acts linearly in the neighborhood of 0.
H. Poincaré noticed that such an equation admits a formal solution σ ∈ tC[[t]], called a Poincaré function,
which is actually the expansion at zero of a uniform function, i.e. a meromorphic function over the whole C.
See [Poi90, page 318]. The functional equation (1.1) plays a key role in rational dynamics and for this reason
has been studied by many authors, in particular relaxing the assumption on the absolute value of q.

In [Rit26], J.F. Ritt addresses the question of the differential algebraicity of σ over the field of rational
functions C(t), i.e., the fact that σ is solution of an algebraic differential equation with coefficients in C(t).
This means that there exists a non-negative integer n and a non-zero polynomial P ∈ C[t,X0, X1, . . . , Xn] such
that P (t, σ, σ′, . . . , σ(n)) = 0. We say that σ is differentially transcendental over C(t) if it is not differentially
algebraic. Ritt’s paper is at the origin of a large literature on differential transcendence of solutions of functional
equations linked to dynamical systems, which is surveyed in [Fer21].

Theorem 1.1 ([Rit26]). Let σ be a solution of a functional equation of the form (1.1), where R(t) ∈ C(t) is
not a homography and R(0) = 0, R′(0) = q ∈ C, with |q| > 1. If σ satisfies an algebraic differential equation
then it is the composition of a homography with a periodic function belonging to the following list: exp(αtp),
cos(αtp + β), ℘(αtp + β), ℘2(αtp + β), ℘3(αtp + β) or ℘′(αtp + β), where ℘ is the Weierstrass function and for
a convenient choice of p ∈ Q, of α ∈ C and of a fraction β ∈ C of the period.

The list above appears in [Rit22], where Ritt classifies periodic Poincaré functions. For more comments and
explanations on such a list we refer to [Fer21, §3.1]. Notice that σ is rational if and only if R(t) is a homography
(see Lemma 2.1 below).

The original proof of the theorem above is organised in the following way:

1. Ritt supposes that σ is solution of a general algebraic differential equation. Replacing t by qt and using
(1.1), he derives a new differential equation that allows him to perform an Euclidean division in order to
lower what he calls the rank of the differential equation. He iterates this operation several times, choosing
carefully the terms to eliminate in the process: this part of the proof (namely from §4 to §11 in loc.cit.)
is really a tour de force. He narrows the investigation to three possible differential equations satisfied by
σ, that are called (A), (B) and (C) (see §11 in loc.cit.), and he notices that the solutions of (A) and (B)
are actually solutions of a differential equation of type (C), so that he is left with this last case.
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2. He shows that the Poincaré functions that are also solutions of (C), are obtained by composing a periodic
Poincaré function with a rational power of t.

3. He uses his results in [Rit22] on the classification of periodic Poincaré functions to make the list explicit
and concludes a posterori that actually only the differential equation, that he calls (A), can occur:

(A) (y′)r = tjA(y), where r, j ∈ Z and A(t) ∈ C(t).

Ritt’s proof of Theorem 1.1 is extremely technical and it may be difficult to understand how the differential
equation (A) is singled out at the very last line of the paper. We think that the Galoisian proof presented
below, which is much shorter modulo the Galois theory, may give a different insight on the existence of the
differential equation (A). The price to pay for a theoretical understanding of the existence of the equation (A)
is the algorithmic nature of Ritt’s proof. Another proof of Ritt theorem can be found in [Cas06, Cas15], where
the same three differential equations as in Ritt’s paper appear.

The purpose of this paper is to give a Galoisian proof of the following theorem, from whom one can deduce
Ritt’s theorem (see §2 below):

Theorem 1.2. Let σ ∈ C[[t]] be a formal solution of a functional equation of the form (1.1), for some R(t) ∈
C(t) not a homography, such that R(0) = 0, R′(0) = q 6= 0 not a root of unity. The function σ is differentially
algebraic over C(t) if and only if it is solution of a differential equation “of Ritt type (A)”, with r 6= 0.

We close the paper by proving a generalisation of the last statement to the case of a series R(t) ∈ C[[t]]
algebraic over C(t), such that R(0) = 0 and R′(0) = q, with q ∈ C, q 6= 0 not a root of unity.

The paper is organized as follows. In §2 we show how to deduce Theorem 1.1 from Theorem 1.2. In §3 we
recall some basic facts of difference Galois theory, that are used in §4 to prove Theorem 1.2. Finally, in §5, we
generalize Theorem 1.2 to the case of an algebraic function R.

Acknowledgement. It is a pleasure to thank the participants of the Groupe de travail sur les marches dans
le quart de plan, where both authors have given several talks on Ritt’s theorem and on some subsequent works
in differential algebra. We would like to thank Guy Casale and Federico Pellarin for their interest for the present
work and Alin Bostan for his attentive reading of the manuscript and his remarks that have allowed to improve
a previous version of our result.

2 How to deduce Theorem 1.1 from Theorem 1.2

The proof below follows the main ideas of Ritt (see [Rit26, §12]), but it is easier than the original proof, since
we are left from the beginning with the simplest differential equation among the three found by Ritt. For the
reader convenience we give all the details, even the proofs of the lemmas below that are already in the original
reference, and are quite classical.

Let R(t) ∈ C(t) be such that R(0) = 0 and R′(0) = q ∈ C, with |q| > 1. We consider the only solution
σ ∈ t+ t2C[[t]] of the functional equation (1.1), namely:

σ(qt) = R(σ(t)).

As we have already pointed out in the introduction, σ is the expansion at zero of a uniform meromorphic
function over the whole C.

Lemma 2.1 ([Rit26, §1]). The following assertions are equivalent:

1. The Poincaré function σ is rational.

2. σ is a homography.

3. R(t) is a homography.

Proof. If R(t) is a homography, it must have the form R(t) = qt
at+1 , for some a ∈ C. Then σ(t) = (q−1)t

at+(q−1) . We

conclude proving by contradiction that, if σ is rational, then R(t) is a homography. First, notice that Equation
(1.1) implies that:

(2.1) σ(q2t) = R(R(σ(t))).

We suppose that σ ∈ C(t) and assume that the degree of the numerator of R, after eliminating any common
factor with the denominator, is at least 2. In this case, R(t) has at least two finite zeros, namely 0, which is
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simple zero by assumption, and a1 6= 0. The rationality of R implies that there exists a2 such that R(a2) = a1.
Note that a2 /∈ {0, a1} and R(R(a2)) = 0. The rationality of σ implies that there exists bi such that σ(bi) = ai,
for i ∈ {1, 2}. Since b1 6= b2, b1 and b2 cannot be both equal to ∞. If b1 is finite, we deduce from (1.1) that
σ(qb1) = R(σ(b1)) = 0. Recursively we obtain that σ(qnb1) = 0 for any positive integer n, and hence that σ
has an infinite number of zeros, which contradicts its rationality. If b2 is finite, we use (2.1) to conclude that
σ(q2nb2) = 0 for any positive integer n, and hence that σ has an infinite number of zeros, which contradicts
its rationality. Therefore the numerator of R cannot have degree greater than 1, and it is equal to qt. If the
denominator of R(t) is a polynomial of degree at least 2, then the numerator of R(R(t)) has degree at least 2.
Applying the previous reasoning to R◦R and Equation (2.1), we obtain a contradiction. So both the numerator
and the denominator of R have degree at most 1, which means that R is a homography.

Corollary 2.2 ([Rit26, §1 to §3]). If R(t) is not a homography, then:

1. σ has an infinite set of zeros and an essential singularity at ∞.

2. σ is transcendental.

Proof. Let us suppose that the numerator and the denominator of R(t) do not have common factors. If R is
not a homography, then either the numerator or the denominator of R has degree at least 2. As in the proof
of the previous lemma, we conclude that σ has an infinite set of zeros, that accumulate at ∞. Since σ is not
identically zero, it must have an essential singularity at ∞. This also implies that σ is transcendental.

Proof of Theorem 1.1. By Theorem 1.2, we have (σ′)r = tjA(σ), for some r, j ∈ Z, with r 6= 0, and A(t) ∈ C(t),
and hence:

0 = ordt=0(σ′)r = j + ordt=0A(t) ordt=0σ(t).

We conclude that ordt=0A(t) = −j. We know from the previous corollary that σ has a finite zero b 6= 0. Let
p := ordt=bσ(t) ≥ 1. We observe that:

r ordt=bσ
′(t) = ordt=0A(t) ordt=bσ(t) = −jp,

hence r(p−1)+jp = 0. We consider the change of variable t = up and we set z(u) := σ(up). A direct calculation
shows that:

(2.2) z(q1/pu) = R(z(u)) and z′(u)r = prA(z(u)).

Notice that for any non-zero constant ũ, the function z(u + ũ) is also a solution of the differential equation
above. Since σ has an essential singularity at ∞, then σ takes all the values in C, with at most one exception.
The same holds for z(u). Therefore the unique solution of the differential equation y′(u)r = prA(y(u)) with
initial condition y(u0) = c, with u0, c ∈ C, is constructed in the following way: we find uc such that z(uc) = c
and we chose the solution z(u− u0 + uc) of the differential equation above. Given the freedom in the choice of
both u0 and c, one avoids the missing value of z(u) and concludes that all solutions of y′(u)r = prA(y(u)) are
obtained composing z(u) with a translation.

By construction, the solution z(u) has a non-trivial monodromy. Let z̃(u) be another branch of z(u). We
observe that z̃(u) is solution of the system (2.2), therefore z̃(u) = z(u + ũ), for some non-zero ũ ∈ C. The
uniqueness of the analytic continuation implies that z̃(q1/pu) = R(z̃(u)) and hence that:

z(q1/pu+ ũ) = z̃(q1/pu) = R(z̃(u)) = R(z(u+ ũ)) = z(q1/p(u+ ũ)).

We deduce that z is periodic of period (q1/p − 1)ũ. We conclude as Ritt does, using his result [Rit22] on the
classification of periodic Poincaré functions.

3 Elements of Galois theory of difference equations

For an introduction to the Galois theory of difference equations, we refer the reader to [vdPS97], or to [OW15,
§2], where the authors make very general assumptions. The setting considered here (as well as the notation)
matches the approach developed in [DV19, §2 to §5], so we are going to refer to it. The only difference with
[DV19] is that our field of constants C is algebraically closed. For this reason we can naively identify the Galois
groups with their C-points, which makes things slightly easier. We remind below the notions that are essential
to the understanding of the proof in the next section.

Let F/K be a field extension, such that F comes equipped with an endomorphism Φ : F→ F, which induces
a non-periodic endomorphism of K. It means that there exists x ∈ K such that Φn(x) 6= x, for any non-zero

3



integer n. We suppose that the field C of elements of F that are left invariant by Φ is algebraically closed and
that C ⊂ K. We consider the linear system of the form

(3.1) Φ~y =

(
a1 b
0 a2

)
~y,

where a1, a2, b ∈ K, with a1a2 6= 0, and we suppose that there exists an invertible matrix

(
z1 w
0 z2

)
∈ GL2(F)

that satisfies (3.1).

Definition 3.1 (see [DV19, Def. 3.5]). We call Picard-Vessiot ring of (3.1) over K the ringR = K[z±1
1 , z±1

2 , w] ⊂
F. We define the Galois group of (3.1) to be:

(3.2) G := {ϕ : R → R, automorphism of K-algebras, such that ϕ ◦ Φ = Φ ◦ ϕ}.

The elements of G extend to automorphisms of the field of fractions L of R.

The system (3.1) boils down to the equations Φ(zi) = aizi, for i = 1, 2, and Φ(w) = a1w + bz2. Any ϕ ∈ G,
being a ring automorphism, must leave globally invariant the space of solutions of (3.1). Therefore there exists
non-zero ci ∈ C such that ϕ(zi) = cizi, for i = 1, 2. As far as ϕ(w) is concerned, it must be a solution of
Φ(y) = a1y + bϕ(z2) = a1y + bc2z2, hence there exists d ∈ C such that ϕ(w) = dz1 + c2w. We conclude that

ϕ

(
z1 w
0 z2

)
=

(
z1 w
0 z2

)(
c1 d
0 c2

)
=

(
c1z1 dz1 + c2w

0 c2z2

)
,

for some

(
c1 d
0 c2

)
∈ GL2(C).

We now state the main properties of the Galois group of a functional equation:

Theorem 3.2 ([DV19, Thm. 4.9 and 5.3]). 1. The Galois group G is an algebraic subgroup of GL2(C), and
its dimension as an algebraic variety over C is equal to the transcendence degree of L/K.

2. K = {f ∈ L : ϕ(f) = f ∀ϕ ∈ G}.

Example 3.3. Let us consider a special case of the system (3.1), with b = 0 and, therefore, w = 0. In this
case the Picard-Vessiot ring coincides with R := K[z±1

1 , z±1
2 ] and its Galois group G is a subgroup of the group

of the invertible diagonal matrices of rank 2, that we can naively identify with (C∗)2. It means that for any
automorphism ϕ ∈ G there exist two non-zero constants c1, c2 ∈ C such that ϕ(zi) = cizi, for i = 1, 2.

The solutions z1, z2 are algebraically dependent over K if and only if G has dimensions 0 or 1, or equivalently
if it is a proper algebraic subgroup of (C∗)2. We know that the proper algebraic subgroups of (C∗)2 are defined
by equations of the form Xα1

1 Xα2
2 = 1, for some α1, α2 ∈ Z2 r {(0, 0)}. It means that cα1

1 cα2
2 = 1. We conclude

from the theorem above that zα1
1 zα2

2 ∈ F is invariant under any automorphism of the Galois group G and hence
that zα1

1 zα2
2 ∈ K.

Example 3.4. If in (3.1) we set a1 = a2 = 1, then we can take z1 = z2 = 1. The Picard-Vessiot ring boils down

to R = K[w] and the Galois group G is a subgroup of the group of matrices

{(
1 d
0 1

)
, d ∈ C

}
, that we can

identify to (C,+). It means that for every ϕ ∈ G, there exists a constant d ∈ C such that ϕ(w) = w + d.
The solution w is algebraically dependent over K if and only if G is a proper algebraic subgroup of (C,+),

but the only proper algebraic subgroup of (C,+) is the trivial group 0. Hence, if w is algebraic over K, then
d = 0 and w is tautologically left fixed by all morphisms of G. We conclude that w ∈ K.

4 Proof of Theorem 1.2

Let C be an algebraically closed field and F := C((x)). We fix a formal power series R ∈ F such that R is not
a homography, R(0) = 0, R′(0) = q 6= 0 is not a root of unity, so that we can define the morphism:

ΦR : F → F,
f 7→ f(R(x)).

Notice that ΦR is an automorphism of F. Moreover, ΦR is not periodic.

Lemma 4.1. The field of constants FΦR := {f ∈ F : ΦR(f) = f} of F with respect to ΦR coincides with C.
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Proof. Let f ∈ F r C be such that f(R(x)) = f(x). Replacing f with f − f(0), we can suppose that f has no
constant term and, replacing f with its inverse for the Cauchy product, we can suppose that f =

∑
n≥N fnx

n,

for some positive integer N that we chose so that fN 6= 0. The coefficient of xN in f(R(x)) is fNq
N . We deduce

from f(R(x)) = f(x) that fNq
N = fN , with qN 6= 0, 1, and hence that fN = 0, against our assumption. We

conclude that, if f has no constant term, then f = 0. This means exactly that FΦR = C.

Let K := C(x) be the field of rational functions. We assume that R is (the expansion of) a rational function.
In this case ΦR an endomorphism of K and we consider the functional equation:

(4.1) ΦR(y0(x)) = qy0(x).

We use the notation y0 for the unknown function for reasons that will be clearer in a few lines. The equation
above has a formal solution τ ∈ F. It satisfies necessarily τ(0) = 0. Notice that τ is determined up to a
multiplicative constant. We have:

Theorem 4.2. Let τ ∈ F be a formal solution of (4.1). The following assertions are equivalent:

1. τ is differentially algebraic over C(x).

2. τ satisfies a differential equation with coefficients in C(x) of order 1.

3. τ is solution of the differential equation (y′)r = A(x)yj, for some (r, j) ∈ Z2, with r 6= 0, and A(x) ∈ C(x).

Proof. Notice that the implications 3⇒ 2⇒ 1 are tautological. Proving that 1⇒ 3 would end both the proof
of this theorem and of Theorem 1.2: to achieve this purpose we will rather prove that 1⇒ 2⇒ 3.

We start proving that 2⇒ 3. We consider the system of functional equations

(4.2)

{
ΦR(y0) = qy0,

ΦR(y1) =
q

R′
y1.

We are in the case of Example 3.3. The fact that τ is solution of a differential equation of order 1 means that
the system above has a basis of solutions, namely τ, τ ′, which are algebraically dependent over K. Following
the example, we conclude that τα1(τ ′)α2 ∈ K, for some integers α1, α2, which cannot be simultaneously zero.
If α2 6= 0, it is enough to rephrase the latter statement in Ritt’s notation: There exist r, j ∈ Z, with r 6= 0, and
A(x) ∈ K such that τ is solution of the differential equation (y′)r = A(x)yj , as claimed. On the other hand, if
α2 = 0, then τα1 ∈ K, and we can conclude by taking the logarithmic derivative.

We now prove by contradiction that 1⇒ 2. So let us suppose that τ is solution of an algebraic differential
equation of order n such that n > 1 is minimal for this property. We set Kn := K(τ, τ ′, . . . , τ (n−1)). The
definition of n implies that τ (n) is algebraic over Kn, but τ (n) 6∈ Kn, otherwise we would obtain a differential
equation of order n− 1 for τ . Notice that deriving ΦR(y0) = qy0, calling yk the k-th derivative of y and using
the Faà di Bruno’s formula we obtain:

(ΦR(y0))(n) =

n∑
k=1

Bn,k(R′, . . . , R(n−k+1))ΦR(yk) = qyn,

where Bn,k(x1, . . . , xn−k+1) are the Bell polynomials defined by the multivariate identity: exp
(∑∞

j=1 xj
tj

j!

)
=∑

n≥k≥0Bn,k(x1, . . . , xn−k+1) t
n

n! . As Bn,n(x1) = xn1 , replacing the ΦR(yk)’s recursively up to yn−1, we obtain
an expression of the form:

ΦR(yn) =
q

(R′)n
yn +

n−1∑
k=1

An,k(x)yk,

where An,k(x) ∈ C(x) is a rational function, which is actually a rational expression in the derivatives of R. We

set b :=
∑n−1
k=1 An,k(x)τ (k) ∈ Kn and z = (τ ′)nτ1−n ∈ K2 ⊂ Kn, to simplify the notation. We deduce from the

functional equation above that ωn := τ(n)

z verifies the functional equation

(4.3) ΦR(ωn) = ωn +
b(R′)n

qz
.

We are in the situation of Example 3.4. Since ωn is algebraic over Kn, we conclude that ωn ∈ Kn. Since z ∈ Kn,
we conclude that also τ (n) ∈ Kn, which is in contradiction with our choice of n. This ends the proof.

We deduce theorem Theorem 1.2 from the statement above.

Proof of Theorem 1.2. Let σ be the inverse of τ for the composition. First of all, let us notice that σ is
differentially algebraic over C(t) if and only if τ is differentially algebraic over C(x) (see [BR86, page 344] or
[Moo96, page 55, (n)]). We consider the local change of variable t = τ(x) in (1.1), or equivalently x = σ(t),
which transforms (4.1) and (τ ′)r = A(x)τ j into (1.1) and (σ′)−r = tjA(σ), respectively.

5



5 The algebraic case

We change a little bit the notation with respect to the previous section. Let us consider the relative closure K
of C(x) inside F := C((x)) and R(x) ∈ K, such that R is not a homography, R(0) = 0, R′(0) = q 6= 0 is not a
root of unity. Then the functional equation

τ(R(x)) = qτ(x)

has a formal solution at 0.
We can define the automorphism ΦR of F as in the previous section. Then ΦR induces an automorphism of

K and the field of constants is C, as in Lemma 4.1. Reasoning word by word as in the previous section one can
prove:

Theorem 5.1. Let τ(x) be a formal solution of τ(R(x)) = qτ(x) in C[[x]]. If τ(x) is differentially algebraic
over K, then it satisfies a differential equation of the form (y′)r = yjA(x), where r, j are integers, with r 6= 0,
and A(x) ∈ K.

Remark 5.2. The fact that K/C(x) is algebraic implies that being differentially algebraic over K is equivalent to
being differentially algebraic over C(x). Since A(x) ∈ K, there exists P (x, T ) ∈ C[x, T ] such that P (x,A(x)) = 0.
Then P (x, (y′)ry−j) = 0 provides a differential equation for τ over C(x).
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