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Abstract. In 1994, P.-G. Becker and W. Bergweiler [8] listed all the differentially algebraic
solutions of three famous functional equations: the Schröder’s, Böttcher’s and Abel’s equations.
The proof of this theorem combines various domains of mathematics. This goes from the theory of
iteration, which gave birth to these equations, to the algebro-differential notion of coherent families
developed by M. Boshernitzan and L. A. Rubel. This survey is an excursion into the history of
these equations, in order to enlighten the different pieces of mathematics they bring together and
how these parts fit into the result of P.-G. Becker and W. Bergweiler.

1 Introduction
This survey is about three famous functional equations, named after the mathematicians Ernst
Schröder, Lucien Böttcher and Niels Henrik Abel. These equations are linked to the local study of
the iteration of a rational function R(z) ∈ C(z) with complex coefficients around a fixed point α.
That is a point of C ∪ {∞} such that R(α) = α. We can assume, without any loss of generality,
that α = 0 (see Section 2.1 and (8)). Moreover, to avoid the trivial case of Möbius transformations
(see (7) for the definition), which is well-understood, we assume that the degree of R(z), that is
the maximum of the degrees of the coprime polynomials on its numerator and denominator, is at
least 2. Then, the equations we are interested in are the following:

1. Let s = R′(0). If s 6= 0, then, the Schröder’s equation is:

f(sz) = R(f(z)), (S)

2. If R(z) =
∑+∞
n=d anz

n, where d ≥ 2, then the Böttcher’s equation is:

f(zd) = R(f(z)), (B)

3. The Abel’s equation is:

f(R(z)) = f(z) + 1. (A)

In 1994, P.-G. Becker and W. Bergweiler [8] listed all the differentially algebraic solutions of
Equations (S), (B) and (A). The aim of this survey is to present the proof of this result as a
testimony of the richness of the interactions these three equations centralize between various areas
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of mathematics and how the two authors combine them to get their beautiful result. For more
historical details on the theory of iteration, besides the ones given below, we refer to [5] and [2].

Before diving into the history of these equations, let us remind some definitions. First, a formal
power series f(z) with coefficients in the complex plane C is said to be differentially algebraic
over C(z) if there exists a non-zero polynomial P (z,X0, . . . , Xn) with coefficients in C such that:

P (z, f(z), f ′(z), . . . , f (n)(z)) = 0, (1)

where f (n)(z) is the n-th derivative of f with respect to z. We say that f is differentially
transcendental or hypertranscendental over C(z) if it is not differentially algebraic over C(z).
This notion of differential algebraicity generalises the one of algebraicity. Indeed, a formal power
series f with coefficients in C is said to be algebraic over C(z) if there exists a non-zero polynomial
P (z,X) with coefficients in C such that:

P (z, f(z)) = 0, (2)

and it is said to be transcendental over C(z) otherwise. Moreover, formal power series f1(z), . . . , fn(z)
with coefficients in C are said to be algebraically dependent over C(z) if there exists a non-zero
polynomial P (z,X0, . . . , Xn) with coefficients in C such that:

P (z, f1(z), . . . , fn(z)) = 0. (3)

If they are not algebraically dependent over C(z), we say that these functions are algebraically
independent over C(z). Thus, a hypertranscendental function is transcendental, and all its deriva-
tives are algebraically independent over C(z).

Coming back to our topic, the three equations (S), (B) and (A) are introduced for the need of
the iteration theory, for which Newton’s method is a famous representative, and the research of
fixed points of a rational fraction. They reach their zenith with the development of the theory of P.
Fatou and G. Julia around 1918, which divides the complex plane into different domains according
to the local behaviour of the iterates of a rational fraction, in terms of convergence or divergence
to a fixed point. Thus, the rather algebraic problem of iteration of a rational fraction and the
determination of its fixed points is linked to the rather analytic theory developed by P. Fatou and
G. Julia. The interface between these different domains of mathematics grows in the following years
with the work of J. F. Ritt [62] in the 20’s, who furnishes the list of all the differentially algebraic
solutions of the Schröder’s equation near a repelling fixed point (see the definition in Section 2.1).
This is a first step toward the result of P.-G. Becker and W. Bergweiler [8] we are interested in
(Theorem 3.1 of the present paper). After that, the interest for these equations wanes for almost
sixty years, with a renewal of enthusiasm in the 80’s. Indeed, then, the sets of Fatou and Julia
share connexions with dynamical systems and fractals which are very prolific areas at that time.
From the algebraic point of view, this surge of interest is visible in 1995 in the result of P.-G.
Becker and W. Bergweiler [8], which completes the previous result of J. F. Ritt on the Schröder’s
equation. The two authors also provide a partial result of Theorem 3.1 one year earlier in [7].
Indeed, they give the list of all the algebraic solutions of the Böttcher’s equation (B). In this paper,
we present their accomplished result [8], reproduced in Theorem 3.1. This statement provides the
list of all the differentially algebraic solutions of the Schröder’s, Böttcher’s and Abel’s equations.
The proof of P.-G. Becker and W. Bergweiler relies on the results in [62, 7], a theorem on coherent
families developed by M. Boshernitzan and L. A. Rubel [11], and the theory of P. Fatou and G.
Julia [25, 26, 27, 40].
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2 Schröder’s, Böttcher’s and Abel’s equations: their deep
interactions with the iteration theory through history

2.1 The birth of the Schröder’s, Böttcher’s and Abel’s equations
The Schröder’s equation appears in 1870 in a paper of the same author [68], in link with the strong
interest of the author in Newton’s method. This consists in finding approximations of real roots
of a real-valued function f(x). The idea is the following. Take a real number x0 and define the
following sequence for n ≥ 0:

xn+1 = xn −
f(xn)
f ′(xn) . (4)

Graphically speaking, the number xn+1 is the abscissa of the intersection point between the tangent
of the curve of f(x) at x = xn and the x-axis. Then, the general principle is that, if one takes x0
close enough to a root of f(x), then the sequence (xn) may converge to this root. As mentioned in
[2], this problem seems to be one of the oldest processes of iteration in the history of mathematics
and we can find tracks of this in ancient Babylone or in the Arab world of the twelfth century.

We shall point out that I. Newton did not present his method with the expression of the sequence
(4) but with an equivalent approach based on algebra rather than calculus. An other equivalent
formulation is then made by J. Raphson, again without the use of calculus. It is finally T. Simpson
who introduces the closest procedure to (4), formally defined in this precise form by J. Fourier.

The contribution of E. Schröder to the further development and generalization of Newton’s
method results from his idea of turning the discrete problem of the convergence of the sequence (4)
into the iteration problem of the function:

R(x) = x− f(x)
f ′(x) . (5)

With this point of view, a zero α of f(x) becomes a fixed point of R(x). This also allows the
author to extend Newton’s method to the complex plane and to the search of complex fixed points
of R(x), or complex zeros of f(x). We will be mainly interested in the case where R(z) is a rational
fraction with coefficients in C of degree at least two. Let Rn(z) denote the n-th iterate of R(z).
We remark that if we start with a point z0 and if Rn(z0) converges to a point α, then R(α) = α.
That is, α is a fixed point of R(z). This explains why such points are important in the theory of
iteration. Now, by Taylor formula, in a neighbourhood of the fixed point α, the value |R(z) − α|
can be approximated by |R′(α)||z − α|. Hence, we guess that the behaviour of the sequence Rn(z)
is not the same depending whether |R′(α)| < 1 or |R′(α)| > 1 for example. Indeed, in the first case,
the sequence converges to α (it is the fixed point theorem of E. Schröder and G. Koenigs mentioned
below), and in the second, the only way for this sequence to converge to α is that RN (z) = α for
some N ∈ N. That is why we distinguish the following categories of fixed points α of R, according
to the value of |R′(α)|. We say that a fixed point α is:

1. attracting if 0 < |R′(α)| < 1,

2. super-attracting if |R′(α)| = 0,

3. repelling if |R′(α)| > 1,

4. rationally indifferent if R′(α) is a root of unity,
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5. irrationally indifferent if |R′(α)| = 1 and if R′(α) is not a root of unity.

E. Schröder establishes (even if his proof is not rigorously explained) the following fixed point
theorem in [68]: if R(z) is an analytic function in a neighbourhood of an attracting fixed point α
of R, then, there exists a neighbourhood D of α such that:

lim
n→+∞

Rn(z) = α,∀z ∈ D.

Note that G. Koenigs provides a complete proof of this theorem in [41]. This result can be
obtained by applying the Taylor formula to R(z) near z = α. As α is attracting, we find the
existence of a neighbourhood D of α, and a real number ε such that 0 < ε < 1 and :

|R(z)− α| < ε|z − α|, ∀z ∈ D.

We deduce that R(D) ⊂ D. By induction on n, we find that Rn(D) ⊂ D, for every integer n ≥ 1
and the announced convergence in D.

Now, let us assume that the rational fraction R(z) of the Newton’s method (5) satisfies the
assumption of the fixed point theorem. Then, the aim of E. Schröder is to generalize Newton’s
method by finding rational fractions φ(z) distinct from R(z), such that φ(α) = α and such that
φn(z) converges to α when z is close enough to α, in order to improve the rate of convergence
of Rn(z). To do so, it is important to understand the iterates of a rational fraction. But these
are in general difficult to compute. That is why E. Schröder thinks about finding these φ(z) such
that their iterates are easy to compute, while keeping track of the initial rational fraction R(z).
He solves this problem by the use of conjugation. We say that two rational fractions φ and R are
conjugated if there exists an invertible function F (z) such that:

R = F−1φF, (6)

where functional composition is multiplicatively written. Particularly interesting conjugations are
those with a Möbius transformation F , that is a rational fraction of the following form:

F (z) = az + b

cz + d
, (7)

where a, b, c, d ∈ C and ad− bc 6= 0. They are of degree one and stable under composition.
Let us stress that the conjugation preserves the notions of fixed points and iteration. Indeed,

if α is a fixed point of R(z), of one of the five kinds defined before (attracting, super-attracting,
repelling, rationally indifferent or irrationally indifferent) then F (α) is a fixed point of φ(z) of the
same kind, and for every n ∈ N:

Rn = F−1φnF.

The notion of fixed points is crucial in the study of equations (S), (B) and (A). If a rational
fraction R admits a fixed point α, we let SR,α, BR,α, AR,α denote respectively the Schröder’s,
Böttcher’s and Abel’s equation (S), (B) and (A) associated to the rational fraction R. The mention
of α means that we are interested in the behaviour of the iterations of R(z) in a neighbourhood of
the fixed point α.

Furthermore, the conjugation respects the solutions of Equations (S), (B) and (A). Indeed, if
R(z) is a rational fraction which admits a fixed point α, then we have the following:
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1.
f is a solution of SR,α ⇔ gf is a solution of SgRg−1,g(α).

2.
f is a solution of BR,α ⇔ gf is a solution of BgRg−1,g(α). (8)

3.
f is a solution of AR,α ⇔ fg−1 is a solution of AgRg−1,g(α).

Let us go back to the approach of E. Schröder to conjugate the rational fraction of Newton’s
method to find an easier form. The choice of φ(z) = sz in (6), with a certain s ∈ C∗ leads to the
Schröder’s equation:

F (R(z)) = sF (z), (S0)

in which the unknown is the function F (z).
Note that this is slightly different from Equation (S), with the following link: if f is an invertible

solution of Equation (S), then F = f−1 is a solution of Equation (S0). E. Schröder also considers
the case of φ(z) = z+ λ, for a fixed λ ∈ C, which leads to the Abel’s equation (Equation (A) is the
particular case of λ = 1):

F (R(z)) = F (z) + λ. (A0)

Let us note that the case φ(z) = zd, where d ≥ 2 is an integer, gives rise to the following form
of the Böttcher’s equation:

F (R(z)) = F (z)d. (B0)

Likewise, if f is an invertible solution of Equation (B), then F = f−1 is a solution of Equation
(B0).

Moreover, E. Schröder is interested in the so-called analytic iteration problem, which he formu-
lates in the following way in [69]. For a given analytic function φ(z), find a function Φ(w, z) of two
complex arguments, which is continuous (even analytic) in both variables and such that:

Φ(w, z) = Φ(w − 1, φ(z)) (9)
Φ(1, z) = φ(z).

Even if E. Schröder seems not to explicitly connect this problem to the resolution of the
Schröder’s equation, it is worth pointing this link out here, as made in [2]. If there exists an
invertible analytic solution F to Equation (S0), then, a solution of (9) with φ = R is given by:

Φ(w, z) = F−1(swF (z)). (10)

An other solution can be given based on an invertible analytic solution F of the Abel’s equation
(A0) by:

Φ(w, z) = F−1(F (z) + wλ). (11)

Finally, a solution can be given based on an invertible analytic solution F of the Böttcher’s
equation (B0) by:

Φ(w, z) = F−1
(
F (z)d

w
)
. (12)

Thus, solving Equation (S), (B) or (A) implies solving the analytic iteration problem for the
rational fraction R(z). In [41], G. Koenigs proves the existence of an analytic solution F of Equation
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(S0) around an attracting fixed point α, and also (applying his previous reasoning to F−1 instead of
F ) around a repelling fixed point α. Note that in each case, the solution is unique up to a constant
multiplier. Let us consider the attracting case. Recall that s = R′(α). The proof of the author
consists in showing that the following function is analytic in a neighbourhood D of α.

F (z) = limn→+∞
Rn(z)− α

sn
.

Indeed, if we write
Fn(z) = Rn(z)− α

sn
, (13)

we have :

Fn(R(z)) = Rn+1(z)− α
sn

= sFn+1(z).

Then, taking the limit when n tends to infinity, we obtain that F is solution of Equation (S0).
Now, to prove that F is analytic in a neighbourhood of α, G. Koenigs reduces the problem to the

convergence of a series of functions
∑
fi(z). He then uses a result from G. Darboux which states

that if the series
∑
fi(z) and

∑
f ′i(z) both converge uniformly in a disc, then

∑
fi(z) converges to

an analytic function on this disk. Let us reproduce here a shorter proof we can find in [5, page 49]
for example, replacing G. Darboux result by a theorem which states that a locally uniform limit of
a sequence of analytic functions in an open set D is analytic on D. First, there exist σ ∈ R, such
that s < σ < 1, a real number r > 0 little enough, and A ∈ R∗+, such that R is analytic in the disc
D(α, r) centred at α and of radius r, and such that for all z ∈ D(α, r):

|R(z)− α| < σ|z − α|, (14)
|R(z)− α− s(z − α)| < A|z − α|2. (15)

This arises from the Taylor formula applied to R(z) near z = α and the fact that α is an
attracting fixed point of R. We deduce from the first inequality above that R(D(α, r)) ⊂ D(α, r).
Besides, even if this means reducing r we assume that α is the only solution to R(z) = α in D(α, r).

Moreover, we see that for all z ∈ D(α, r):

Fn(z) = (z − α)
n−1∏
k=0

Rk+1(z)− α
s(Rk(z)− α) . (16)

The fact that R(D(α, r)) ⊂ D(α, r) implies by induction that Rn(D(α, r)) ⊂ D(α, r), for every
integer n ≥ 1. Then, for all z ∈ D(α, r) we can apply (14) to Rk−1(z) and (15) to Rk(z). This
gives, for all z ∈ D(α, r) \ {α}:∣∣∣∣ Rk+1(z)− α

s(Rk(z)− α) − 1
∣∣∣∣ < A

|s|
|Rk(z)− α| =: uk(z).

But it appears that for all z ∈ D(α, r) \ {α}:

uk+1(z)
uk(z) < σ < 1.
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We conclude that the product of (16) converges uniformly in D(α, r) \ {α}. Moreover, for every
n ∈ N, Fn(z) admits the finite limit 0 when z tends to α. By (see [67, 7.11 Theorem]), the sequence
(Fn(z)) of analytic functions over D(α, r) converges uniformly on D(α, r). We deduce that F is
analytic in D(α, r). Notice that for every integer n ≥ 1, (Rn)′ (α) = sn. Furthermore, the uniform
convergence of (Fn(z))n near α makes the operations of derivation and limit commute in (13). We
deduce that F ′(α) = 1. Thus F is locally invertible. This result of G. Koenigs strengthen the
connection between the Schröder’s equation and the theory of iteration.

For his part, P. Fatou points out the connections (10) and (11) between Schröder’s and Abel’s
equations and the analytic iteration problem. Indeed, in [25], P. Fatou remarks that the solution of
the Schröder’s equation given by G. Koenigs solves this problem. Then, P. Fatou studies the Abel’s
equation (A0) in the case of a rationally indifferent fixed point α. Inspired by a previous result from
L. Leau [43, 44], P. Fatou proves in [25] the existence of particular domains (that is open connected
sets) L1, . . . , Lk such that, for all j ∈ {1, . . . , k}, α belongs to the boundary of Lj , R(Lj) ⊂ Lj
and the restriction to Lj of Rn converges uniformly to α on Lj , when n tends to infinity. Such
domains are called the petals of R and the result is called the Leau-Fatou Flower Theorem. Note
that a similar result is proved by G. Julia in [40]. In each petal Lj , P. Fatou proves the existence
of an analytic solution of the Abel’s equation (A), and mentions again that this provides a solution
to the analytic iteration problem. Let us precise here that Equation (A) is introduced by N. H.
Abel in [1]. The author remarks that it can be turned into a difference equation. Indeed, if f is an
invertible solution of Equation (A), then F = f−1 is solution of:

F (z + 1) = R(F (z)). (Ã)

Now, let us consider the Böttcher’s equation (B0), in the case of a super-attracting fixed point
α. According to J. F. Ritt [60], the existence of an analytic solution in the neighbourhood of α
is due to L. Böttcher in [12, 13, 14]. J. F. Ritt provides a short proof of this result in [60]. Let
us sketch it here. Even if it means considering, instead of R(z), the conjugation of R(z) with an
appropriate Möbius transformation (7), we may assume that α = 0. Now, let

R(z) =
+∞∑
n=d

anz
n, (17)

where d ≥ 2. Considering a1/(d−1)
d R(z/a1/(d−1)

d ), we may assume that ad = 1. We know that there
exists a disc D around zero in which the only zero of R(z) in D is the origin. Even if this means
reducing the radius of D, we assume that R(D) ⊂ D. This can be deduced from the Taylor formula
and the fact that 0 is a super-attracting fixed point of R(z). By induction, we find that Rn(D) ⊂ D,
for every integer n ≥ 1, and that the origin is the only zero of Rn(z) in D. Moreover, the origin is
a zero of R(z) of order d. Hence, by induction, the origin is a zero of Rn(z) of order dn, for every
integer n ≥ 1. Then, for every integer n ≥ 1:

Rn(z)
zdn 6= 0,∀n ∈ N,∀z ∈ D. (18)

Hence, for every integer n ≥ 1, there exists a dn-th root of (18) on D, that is an analytic function
gn(z) over D such that

gn(z)d
n

= Rn(z)
zdn ,∀z ∈ D.

7



Now if we let hn(z) = zgn(z), which is analytic over D, we get:

hn(z)d
n

= Rn(z),∀n ≥ 1,∀z ∈ D.

We can then write: hn(z) = [Rn(z)]1/dn .
Now, we remark that:

hn+1(z) = z

n∏
i=0

[
g1
(
Ri(z)

)]1/di

, (19)

Some calculation (see the details in [25, page 188]) prove that the product (19) converges uni-
formly on D. We deduce that hn(z) converges uniformly on D to an analytic function F (z) over
D. Finally, we have:

[Rn(R(z))]1/d
n

=
[
Rn+1(z)

]1/dn

=
[(
Rn+1(z)

)1/dn+1]d
.

If we take the limit when n tends to infinity, we obtain that F is solution of (B0), which concludes
the proof.

Let us return to the interest of E. Schröder for the analytic iteration problem. As said before,
the author seems not to relate this question to solutions of the Schröder’s or Abel’s equation in the
manner of (10) and (11). But the author has another connection in mind. He links the existence
of a solution to the analytic iteration problem (9) to the one of a continuous curve which contains
the iterates of φ(z). This consideration of invariant structures of the complex plane with respect
to the iteration is at the heart of the theory developed by P. Fatou and G. Julia. However, the
study of E. Schröder and G. Koenigs are limited to a neighbourhood of a fixed point. One of the
main innovations of the work of P. Fatou and G. Julia is their idea and tools to investigate the
whole complex plane, and in fact the compactification Ĉ = C ∪ {∞} of C, dividing it into zones
depending on the behaviour of the sequence of iterates of a rational fraction. Let us note that Ĉ
makes the study of rational fractions a central topic, as they are the only analytic functions over
Ĉ. In order to present the main discoveries of P. Fatou and G. Julia, let us first introduce some
notations and definitions. As before, and for now on, we let R(z) denote a rational fraction of
degree at least two, and we let Rn(z) denote the n-th iterate of R(z).

Quite natural questions arise when considering a point z0 close to a fixed point α and the
sequence of iterates zn = Rn(z0). From a local point of view, we can wonder if there exists a
neighbourhood of α in which (zn) converges. From a global point of view, we can study the
behaviour of this sequence outside such a neighbourhood, and on its boundary. The work of P.
Fatou and G. Julia is about the second point. We may see this as the study of the impact of the
point z0 and its neighbourhood over the convergence of the sequence (zn). To translate this impact,
P. Fatou [25, 26] involves the theory of normal families developed by P. Montel [52]. We say that
a family F of analytic functions defined on a domain D of Ĉ is normal over D if from every
infinite subsequence of F , we can extract a sub-sequence of F which converges uniformly locally
on D (that is in every compact set of D). The link with our subject is given by the application
of the Arzela-Ascoli theorem to F = {Rn}n. Indeed, this states the equivalence for a family F of
continuous functions defined on a domain D of Ĉ to be normal over D or equicontinuous over D.
But, by definition, {Rn}n is equicontinuous over D if for every z ∈ D and every ε > 0, there
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exists δ > 0 such that for every n ∈ N and every z0 ∈ D:

|z − z0| < δ =⇒ |Rn(z)−Rn(z0)| < ε.

Thus, the notion of equicontinuity exactly transcribes the fact that the behaviour of the sequence
(zn) depends on z0. In order to understand the boundary of this property, P. Fatou defines and
studies the set of all the points of Ĉ for which the family {Rn}n is not normal (that is there exists no
neighbourhood of these points in which the family is normal). He denotes F this set, for Frontière
(french word for boundary). This set is nowadays written as J(R) (or J), for the Julia set associated
to R, and it is its complement Ĉ \ J(R) that is denoted as F (R) (or F ), this time because of the
initial letter of Fatou, and called the Fatou set associated with R. At the same time, G. Julia defines
the set E consisting of all the repelling fixed points of all the iterates Rn, n ∈ N, and studies the
derived set E′ composed by all the accumulation points of E, which coincides with J (see Theorem
3.9. The study of the set J can provide information on the solutions of functional equations. Let
us illustrate this fact with the analytic extension of a solution of the Schröder’s equation (S0) in
a neighbourhood of an attracting fixed point α, following a method introduced by P. Fatou [27].
Recall that s = R′(α). According to G. Koenigs, there exists a neighbourhood Dα of α and an
analytic function F on Dα such that for all z ∈ Dα:

F (R(z)) = sF (z).

Even if this means reducing Dα, we assume that R(Dα) ⊂ Dα. This comes from the Taylor
formula and the fact that α is attracting. Let us consider D̃ = R−1(Dα). The fact that R(Dα) ⊂ Dα

implies that Dα ⊂ D̃. Then, let us define for all z̃ ∈ D̃:

F̃ (z̃) = 1
s
F (R(z̃)).

We see that
F̃ (z) = F (z),∀z ∈ Dα.

Moreover, as R(z̃) ∈ Dα, for all z ∈ D̃, we have:

F̃ (R(z̃)) = F (R(z̃)), ∀z ∈ D̃
= sF̃ (z̃), ∀z ∈ D̃.

Hence, F̃ extends analytically F on D̃ and remains a solution of the Schröder’s equation over D̃.
Iterating the process, we can extend F to an analytic function G over the domain of attraction D of
α (that is the set of all the elements z such that there exists an integer N such that RN (z) ∈ Dα),
such that G remains a solution of the Schröder’s equation over D. Thus, the understanding of
properties of R(z), namely the nature of its fixed points, can provide information about a solution
F (z) of the Schröder’s equation (S0).

However, Equation (S), the other form of the Schröder’s equation, also provides a connection
with the theory of P. Fatou and G. Julia, maybe even better in some cases. Indeed, when α is a
repelling fixed point of R, H. Poincaré [59] proves that the solution f of the Schröder’s equation (S)
(also called Poincaré’s equation in this form) can be extended as a meromorphic function over C.
Hence, this allows a global study of the structure of the Julia set J . As explained in [6, Theorem
6.3.2], a computation of the coefficients of the Taylor series expansion of a formal solution f(z) of
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(S) implies that this series has a positive radius of convergence. Hence, there exists r > 0 such that
f(z) is analytic over the disc D(α, r) centred at α and of radius r > 0. Then, one can extend f(z)
by induction as follows. The analyticity of f(z) over D(α, r) implies that R(f(z)) is meromorphic
over D(α, r). Hence, by Equation (S), so is f(sz). Therefore, f(z) is meromorphic over D(α, sr).
By induction, we find that f(z) is meromorphic over D(α, snr), for every n ∈ N. As |s| > 1, we
obtain that f(z) is meromorphic over C.

The Schröder’s equation is also studied from an algebraic point of view. Indeed, J. F. Ritt
establishes in [62] the list of all the differentially algebraic solutions of this equation, when |s| > 1,
that is, in the case of a repelling fixed point of R(z). This is Theorem 3.1 of Section 3.2.

2.2 The 80’s and the result of P.-G. Becker and W. Bergweiler
During the 30’s, the interest for functional equations (S), (B) and (A) and the theory of iteration
is less vigorous. Nonetheless, let us note the work of C. L. Siegel [71] on the existence of a solution
to Equation (S) for some indifferent fixed points, and the one of H. Brolin [15] on the structure of
the Julia set. The enthusiasm for this subject rises again sixty years later, during the 80’s. This
is mainly due to the connections the theory of P. Fatou and G. Julia shares with the active area
of dynamical systems and fractals, and the possibility to make computational experiences. Indeed,
as said before, the iteration of a rational function R(z) gives rise to a dynamical system, which
divides Ĉ into different areas, depending on the concordance or disparity of the local behaviour
of the sequence {Rn(z)}n around a point z = z0. The concordance is formalized by the notion
of equicontinuous and normal families. The set of points with this local concordance is the Fatou
set F (R) and its complement in Ĉ is the Julia set J(R). Let us assume that R(z) is of degree
at least two. Note that F (R) is open in Ĉ and J(R) is a closed compact subset of Ĉ. Let us
mention that J(R) is always non-empty [25] and perfect, that is, closed and without any isolated
point [26, 40]. Moreover, Julia sets provide lots of examples of fractals. These objects are defined
by B. Mandelbrot in the 90’s [51]. We refer to [21, 18, 58] for more details about what follows.
The story of fractals actually goes back to the works of B. Riemann and K. Weierstrass and their
discoveries of continuous functions with no derivative, at any point. This creates a lot of confusion
in the mathematical community which has trouble to apprehend such strange objects (see more
details in [2, page 88])! This discomfort is even increased with the work of G. Cantor and his
perfect, totally disconnected (that is with all connected components reduced to a point) sets, which
questions the notion of dimension of his time. To deal with the complexity of such objects, the
classical topological dimension is replaced by the Hausdorff dimension, which may be a non integral
number. Intuitively (see for example [58]), this notion measures the growth of the number of sets
of diameter ε needed to cover the concerned set, when ε tends to zero. The Hausdorff dimension is
always greater than or equal to the topological one. B. Mandelbrot defines the fractals as sets for
which the Hausdorff dimension is strictly greater than the topological one. For example, the triadic
Cantor set has topological dimension 0 and Hausdorff dimension log(2)/ log(3) : it is a fractal. As
said before, lots of Julia sets provide examples of fractals. Julia sets still fuel the current research,
with different points of view, namely, investigations on their Hausdorff dimension [45, 73], their
Lebesgue measure [16], or their computational complexity [24]. Apart from the structure of the
Julia set J(R), there is the question of its variation when the coefficients of R(z) depend on a
parameter. This question is raised by P. Fatou in [26]. In the case of polynomials of degree two, of
the form Rc(z) = z2 + c, where c ∈ C, there exists a classification of the Julia sets J(Rc). Note that
each polynomial of degree two is conjugated to a polynomial of such a form. This classification is
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encoded by the Mandelbrot set, defined as the set of the complex numbers c ∈ C for which J(Rc)
is connected. Indeed, the dynamic of Rc(z) changes as c moves from a cardioid to a disc of the
Mandelbrot set. For example (see [6, paragraph 1.6]), let us focus on the cardioid C, and the disc
D, where C = u(D(0, 1/2)), u(z) = z − z2, and D = D(−1, 1/4). The cardioid C and the disc D
are part of the Mandelbrot set (see the figure below). When c ∈ C, the rational fraction Rc admits
a unique attracting fixed point α and a pair (u, v) such that Rc(u) = v,Rc(v) = u, and u, v are
repelling fixed points of R2

c . Then, when c enters inside D, the point α becomes a repelling fixed
point of Rc and the points u, v become attracting fixed point of R2

c . As an illustration, the figure
below represents the Mandelbrot set and the form of the Julia sets J(Rc) attached to Rc for some
of the points c inside and outside the Mandelbrot set. Note that the Mandelbrot set appears to be
connected itself [22].

Figure 1: The Mandelbrot set (in grey) and Julia sets J(Rc) (at the end of the blue lines) for some
points c ∈ C inside and outside the Mandelbrot set. This image is taken from [19].

Besides, the Mandelbrot set M gives rise to the following interesting transcendental result [57].
A certain conformal map Φ(z), constructed by A. Douady and J. H. Hubbard [22], defined on the
complement of M , admits transcendental values Φ(α) at each algebraic α of the complement of M .
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A link with the Böttcher’s equation is that Φ(c) = fc(c), for every c in the complement ofM , where
fc satisfies Equation (B0) for d = 2 and R(z) = Rc(z). In the same area, the algebraic aspects of
the solutions of Equations (S), (B) and (A) are also investigated by many authors, along with other
kinds of functional equations. The first main result of this type is due to 0. Hölder in 1887. Indeed,
the author proves that the Euler’s Gamma function defined for every z ∈ C such that Re(z) > 0,
by:

Γ(z) =
∫ +∞

0
tze−t

dt

t
,

is hypertranscendental over C(z). As said in [65], the proof of O. Hölder is based on the following
functional equation:

Γ(z + 1) = zΓ(z).
This is a non-autonomous version of the Abel’s difference equation (Ã), of the form:

G(z + 1) = R(z,G(z)),

where R(z,X) is this time a complex rational fraction of two variables. In [66, Problem 69], L.
A. Rubel proposes the study of such a generalised functional equation for the Schröder’s equa-
tion. This gives rise to further studies. For example, K. Ishizaki [39] considers the case where
R(z,X) = a(z)X + b(z), with a(z), b(z) rational fractions. The author proves that every transcen-
dental meromorphic solution of the associated generalised Schöder’s equation:

G(sz) = a(z)G(z) + b(z),

with |s| /∈ {0, 1}, is hypertranscendental.

Concerning the generalised equation of (B), that is:

G(zd) = R(z,G(z)), (20)

this is called a d-Mahler equation, introduced by K. Mahler in 1929 in [47, 48, 50]. A solution G
of (20) is called a d-Mahler function. Ke. Nishioka [56] proves that a Mahler function is transcen-
dental if and only if it is not rational (see also [57]). The same author provides in [55] a sufficient
condition for the hypertranscendence of Mahler functions of order one. Before this time, K. Mahler
proved that the d-Mahler function

∑+∞
n=0 z

dn is hypertranscendental [49]. This result is generalised
in [46] with the study by J. H. Loxton and A. J. Van der Poorten of inhomogeneous linear Mahler
systems of order one. Such functional results are motivated by a theorem of K. Mahler [47, 48, 50]
which establishes, under some assumptions, the equivalence between the transcendence of a Mahler
function f(z) and the one of its value f(α) at a non-zero algebraic number α. Thus, results on
functional algebraic independence turns into results on algebraic independence of values. More
results are obtained using an adapted Galois theory. This approach allows K. Nguyen [54] to re-
cover the hypertranscendental result of Ke. Nishioka mentioned above. To illustrate further use of
Galois theory for linear Mahler functions, let us mention the result in [23] which provides sufficient
conditions for a Mahler function to be hypertranscendental, and the work of J. Roques [63]. Note
that these kinds of functional results are still open questions for linear Mahler equations over a func-
tion field of positive characteristic (see for example [30, 31, 29]). Similarly, the Siegel-Shidlovskii
theorem [70], which is a kind of analogue of the Mahler’s theorem for certain solutions of linear
differential equations over C(z) called E-functions, motivates the study of the algebraic indepen-
dence of solutions of such equations. As Mahler functions, there is a dichotomy between rational
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and transcendental E-functions. Moreover, the Hrushovski-Feng algorithm [38, 28] computes the
Galois group of linear differential equations. More generally, the study of hypertranscendence or
algebraic independence of solutions of different types of functional equations is currently a very
dynamic area (see for example [20, 36]). This frequently involves the development and use of Galois
theories adapted to the different settings. As an illustration, let us mention [37] for linear difference
equations, and the work of C. Hardouin for q-difference systems [34], which generalises the work of
K. Ishizaki mentioned above, and the development of a general tannakian Galois theory, which in
particular apply for τ -difference systems in positive characteristic [35], developed by G. Anderson,
W. D. Brownawell and M. Papanikolas [3].

Let us go back to Equations (S), (B) and (A). A fruitful link between algebraic properties of
solutions of these equations and the iteration theory is given in 1986 by a result of M. Boshernitzan
and L. A. Rubel in [11]. This states the equivalence for a solution of Equation (S), (B) or (A) to
be differentially algebraic and the family {Rn(z)}n to be coherent. The latter means that all the
rational fractions Rn(z) satisfy a same algebraic differential equation (1). Note that L. A. Rubel
asked in [66, Problem 27] if there exists a transcendental entire function whose iterates form a
coherent family. This is answered negatively by W. Bergweiler in [9].

The theorem of M. Boshernitzan and L. A. Rubel, is one of the ingredients of the proof of the
result of P.-G. Becker and W. Bergweiler [8] we are interested in. This statement, reproduced here
as Theorem 3.1, explicitly lists all the differentially algebraic solutions of Equations (S), (B) and
(A). Let us note that partial results has already been found. We mentioned earlier the result of
J. F. Ritt [62]. But we can also indicate the work of F. W. Carroll [17]. The author considers
the case where R(z) is a finite Blaschke product with an attracting fixed point (see for example
the survey [32] for the definition and more information about such products). Then, he guarantees
that a solution of the Schröder’s equation (S0) is hypertranscendental. Furthermore, P. Borwein
examines the case where d = 2, and R(z) = z2 + c, with c > 0, in the Böttcher’s equation (B).
Then, the author states that every solution of this equation is hypertranscendental. Moreover, P.
Borwein points out that his proof, as well as the one of J. F. Ritt in [62], shares analogies with
the proof of the hypertranscendence of the Gamma function by O. Hölder. Finally, P.-G. Becker
and W. Bergweiler themselves previously obtained in [7] the list of all the algebraic solutions of the
Böttcher’s equation (B) when R(z) is conjugated to a polynomial. In fact, this list concerns the
solutions of the more general following equation:

f(p(z)) = q(f(z)), (21)

where p(z), q(z) are polynomials of the same degree d ≥ 2, and the attracting fixed point is ∞.
In the same paper [7], the authors conjecture that the transcendental solutions of Equation

(21) are in fact hypertranscendental. For the Böttcher’s equation (B), Theorem 3.1, their further
result, implies that this conjecture is satisfied. To conclude, let us mention some recent works. K.
D. Nguyen [53] studies systems of n Böttcher’s equations (B) for polynomials R1(z), . . . , Rn(z).
The author proves a result that links the algebraic independence of some transformations of the
solutions fRi associated to each Böttcher’s equation to the conjugacy of some iterates of some
polynomials among R1(z), . . . , Rn(z). Finally, M. Aschenbrenner and W. Bergweiler prove in [4]
the hypertranscendence over C(z) of the iterative logarithm itlog(R) of a non-linear rational or
entire function R with a rationally indifferent fixed point. The function itlog(R) is the unique
formal power series solution f of the equation:

f(R(z)) = R′(z)f(z), (22)
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The proof of the authors is similar to the one of Theorem 3.1 we present later. Note that the
authors also prove that in the case where R(z) is a non-linear entire function, the function itlog(R)
is even hypertranscendental over the ring of entire functions. Note that Equation (22) is useful to
study the iteration of R(z) not only in the petals of R(z), given by the Leau-Fatou Flower theorem
mentioned above, but in a neighbourhood of the concerned fixed point.

3 The complete classification of hypertranscendence of the
solutions of the Schröder’s, Böttcher’s and Abel’s

equations
3.1 The statement
Before presenting the statement of P.-G. Becker and W. Bergweiler we are interesting in, let us
precisely define its setting. Let R(z) denote a rational fraction with coefficients in C and of degree
at least two. Even if this means replacing R(z) by a conjugate with the appropriate Möbius
transformation, we may assume that 0 is a fixed point of R(z). Let us write s = R′(0). The
framework considered is the following (see [25, Chapitre II]):

1. If 0 is an attracting, repelling or irrationally indifferent fixed point of R(z), we consider the
Schröder’s equation (S). The Schröder’s equation admits a unique solution of the form

f(z) =
+∞∑
n=1

anz
n, with a1 = 1. (23)

If f converges in a neighbourhood of 0, we say that f is a Schröder function. In the case of
an attracting or repelling fixed point, the solution is always convergent, as seen before. But
in the case of an irrationally indifferent fixed point, there always exists a formal solution, but
not necessarily convergent [71]. The question of the convergence of this formal solution is a
dynamic area of research [74, 33].

2. If 0 is a super-attracting fixed point of R(z), there exists an integer d ≥ 2 such that:

R(z) =
+∞∑
n=d

bnz
n, bd 6= 0. (24)

Then, we consider the Böttcher’s equation (B). For every a1 ∈ C such that a1−d
1 = bd, the

Böttcher’s equation admits a unique solution of the form

f(z) =
+∞∑
n=1

anz
n. (25)

The function f converges in a neighbourhood of 0, and we say that f is a Böttcher function.

3. If 0 is a rationally indifferent fixed point of R(z), even if this means replacing R(z) by an
iterate Rk(z), we may assume that s = 1. Indeed, if sk = 1, we have (Rk)′(0) = sk = 1. Let
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us write:

R(z) = z +
+∞∑
n=d

bnz
n, where d ≥ 2, bd 6= 0. (26)

Then, we consider the Abel’s equation (A). In each petal given by the Leau-Fatou Flower
theorem mentioned earlier, the Abel’s equation admits an analytic solution f(z). We say that
f is an Abel function.

Let us introduce some vocabulary. Let us remind that we say that two analytic functions S1
and S2 are conjugated to each other via an invertible analytic function g if S1 = g−1S2g, where
functional composition is denoted multiplicatively. If we say that S1 and S2 are conjugated, with
no precision about g, we mean that g is a Möbius transformation (7).

We are now able to present the result of P.-G. Becker and W. Bergweiler, as it is written in [8].
We give several explanations and comments about Theorem 3.1 directly after its statement.

Theorem 3.1 (P.-G. Becker and W. Bergweiler )
Let f(z) be a Schröder, Böttcher or Abel function. Let us assume that f is differentially algebraic.
Then, we have the following.

1. If f is a Schröder function, then 0 is a repelling fixed point of R(z) and f is a Möbius
transformation of a function of one of the following forms:

(a) exp(αzr). In this case, R(z) is conjugated to zd or z−d.
(b) cos(αzr + β). In this case, R(z) is conjugated to Td or −Td, where Td is the d − th

Tchebychev polynomial.
(c) ℘(αzr + β), ℘2(αzr + β), ℘3(αzr + β), ℘′(αzr + β), where ℘ denotes the Weierstrass

function,

where the constant r is a rational number such that the concerned functions are meromorphic
over C, α is a non-zero complex number and β is a fraction of a period of the concerned
function.

2. If f is a Böttcher function, then, f is a Möbius transformation or is a Möbius transformation
of a function of one of the following forms:

(a) ρz, where ρd−1 = 1. In this case, R(z) is conjugated to zd.
(b) ρz + 1

ρz , where ρ
d−1 = 1. In this case, R(z) is conjugated to Td.

(c) ρz + 1
ρz , where ρ

d−1 = −1. In this case, R(z) is conjugated to −Td.

3. The function f is not a Abel function.

In particular, Abel functions are always hypertranscendental.

The meromorphic condition, for the Schröder functions, is due to the fact that, in the case of
a repelling fixed point, every solution of Equation (S) extends to a meromorphic function on the
complex plane, as seen at the end of Section 2.1. Remark that, even if the function z → zr is not
meromorphic on the complex plane when r is not an integer, this case may happen. There is an
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example below, with the meromorphic function cos(
√

2z)− 1 on the complex plane, where r = 1/2.

We refer to the proof of Theorem 3.8, and references inside, for more details on the rational
fraction of the Schröder’s equation associated to the Weierstrass function (see also [61]).

We reproduced in Theorem 3.1 the statement as it is written in [8]. The fixed point of the
rational fractions R(z) involved in this statement is not necessarily 0. We clarify this point below.

1. If f is a Schröder function

(a) The rational fractions R(z) = zd or R(z) = z−d are considered at the repelling fixed
point z = 1. To move it at the origin, we have to conjugate R(z) with L(z) = z − 1.
Then we have: R̃(z) = (z + 1)d − 1, or R̃(z) = (z + 1)−d − 1, and associated solutions
of equation SR̃,0 are of the form exp(αzr) − 1, where α, r are as in the statement of
Theorem 3.1. In particular, f̃(z) = exp(z)− 1 is such that f̃(0) = 0 and f̃ ′(0) = 1.

(b) The rational fractions R(z) = Td or R(z) = −Td are considered at the repelling fixed
point z = 1. To move it at the origin, we have to conjugate R(z) with L(z) = z − 1.
Then we have: R̃(z) = Td(z+ 1)− 1, or R̃(z) = T−d(z+ 1)− 1, and associated solutions
of equation SR̃,0 are of the form cos(αzr + β)− 1, where α, β, r are as in the statement
of Theorem 3.1. In particular, f̃(z) = cos(

√
2z)− 1 is such that f̃(0) = 0 and f̃ ′(0) = 1.

2. If f is a Böttcher function,

(a) The rational fraction R(z) = zd is considered at the super-attracting fixed point z = 0.
(b) The rational fraction R(z) = Td(z) is considered at the super-attracting fixed point

z = ∞. To move it at the origin, we have to conjugate R(z) with L(z) = 1/z. Then
we have: R̃(z) = 1/(Td(1/z)), and associated solutions of equation BR̃,0 are of the form
1/(ρz + 1

ρz ), where ρd−1 = 1.

(c) The rational fraction R(z) = T−d(z) is considered at the super-attracting fixed point
z =∞. To move it at the origin, we have to conjugate R(z) with L(z) = 1/z. Then we
have: R̃(z) = 1/(T−d(1/z)), and associated solutions of equation BR̃,0 are of the form
1/(ρz + 1

ρz ), where ρd−1 = −1.

Let us recall the following definitions. The Weierstrass function ℘ is a meromorphic function
over C, attached to a lattice Λ⊂ C, that is a discrete subgroup of C that contains an R-basis of
C, and defined by:

℘(z) := ℘Λ(z) = 1
z2 +

∑
w∈Λ,w 6=0

(
1

(z − w)2 −
1
w2

)
.

The function ℘Λ is periodic with respect to Λ, that is:

℘Λ(z + ω) = ℘Λ(z), ∀z ∈ C,∀ω ∈ Λ. (27)

Besides, the function ℘Λ satisfies the following algebraic differential equation:

℘′2Λ = 4℘3
Λ − g2(Λ)℘Λ − g3(Λ), (28)
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where g2(Λ), g3(Λ) ∈ C depend on Λ and satisfy g2(Λ)3 − 27g3(Λ)2 6= 0. For more details, see for
example [72].

Finally, Tchebytchev polynomials are defined by induction with:

T0(X) = 1, T1(X) = X,Tn+2(X) = 2XTn+1(X)− Tn(X),∀n ≥ 2.

Let us note that for every integer n ≥ 0 and every x ∈ [−1, 1]: Tn(cos(x)) = cos(nx).

3.2 First ingredient: Preliminary results around the (hyper)transcendence
of solutions of Equations (S) and (B)

3.2.1 A result of J. F. Ritt

As mentioned earlier, J. F. Ritt gives in 1926 the list of all the differentially algebraic Schröder
functions when 0 is a repelling fixed point of R(z) [62]. These are exactly the functions listed in
the first point of Theorem 3.1. Thus, when the Schröder’s equation admits a differentially algebraic
solution, then, the considered fixed point of the associated rational fraction is always repelling.

Theorem 3.2 (J. F. Ritt )
Let us assume that 0 is a repelling fixed point of a rational fraction R(z) of degree at least two. Let
f be a solution of the associated Schröder’s equation (S). If f is differentially algebraic, then, f is
in the list of the first point of Theorem 3.1.

The proof of this theorem is based on the theories of differentiation and elimination. These
techniques allow the author to prove that a solution of Equation (S) is (after an appropriate change
of variables) a solution of a Schwarz equation of the following form:

g(3)g′ − 3/2(g(2))2 = A(g)g(4), (29)

where A is a rational fraction.
The author then uses a previous classification of his own [61] for differentially algebraic solutions

of (29) to deduce that they are of the desired forms. As noted earlier, P. Borwein in [10] points out
that the techniques of this proof share analogies with the proof of the hypertranscendence of the
Gamma function by O. Hölder.

3.2.2 A result of P.-G. Becker and W. Bergweiler

One year before proving Theorem 3.1, P.-G. Becker and W. Bergweiler [7] provided the list of all the
algebraic Böttcher functions, when R(z) is conjugated to a polynomial. It is exactly the functions
listed in the second point of Theorem 3.1. Thus, the Böttcher functions are transcendental if and
only if they are hypertranscendental. This was a part of a conjecture of the two authors in [7]. Let
us state this previous result in the case of Böttcher functions. As said before, this applies to the
more general equations (21).

Theorem 3.3 (P.-G. Becker and W. Bergweiler )
Let R(z) be a polynomial of degree at least two and let f be a solution of the associated Böttcher’s
equation (B). Then, f is algebraic if and only if f is in the list of the second point of Theorem 3.1.
In particular, all the algebraic Böttcher functions are rational.
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The proof of Theorem 3.1 is based on the analysis of the finite singularities (algebraic branch
points) of the Böttcher function. Indeed, the authors prove that a non-rational algebraic solution
of (B) has exactly two such finite singularities, which allows them to find the corresponding forms
of R(z). Then, the first remarks of the paper [7] provide the Böttcher functions when R(z) ∈
{zd, Td,−Td}. Notice that a Möbius transformation of an algebraic function remains algebraic.

3.3 Second ingredient: the notion of coherent families
Remind that a formal power series f(z) is differentially algebraic if there exists a non-zero poly-
nomial P (z,X0, . . . , Xn) such that f satisfies (1). Examples of such functions are given by poly-
nomials, algebraic functions, Bessel functions and classical functions as the exponential, logarithm,
cosinus or sinus for example. As said before, the first example of hypertranscendental function does
not appear before 1887, with the Euler’s Gamma function given by O. Hölder. But most entire
functions, or analytic functions over a domain of C, are hypertranscendental [65, Theorem 5].

In [66, Problem 26”], L. A. Rubel asks the following question: are there any boundary on the
growth of entire differentially algebraic functions ? More precisely, given an entire differentially
algebraic function satisfying an n-order equation (1), do constants A,α exist such that:

|f(z)| ≤ A expn(|z|α)? (30)

L. A. Rubel indicates that a strategy to answer the question negatively should be to construct a
function f big enough (compared to the exponential) such that all its iterates fk(z) satisfy the same
algebraic differential equation. This is the notion of coherent family studied by M. Boshernitzan
and L. A. Rubel in [11]. Indeed, recall that a family of functions is said to be coherent if all
its elements satisfy the same algebraic differential equation (1). As an example, let us consider
the family {czn, c ∈ C, n ∈ N}. This family is coherent because each of its elements satisfies the
following algebraic differential equation:

zf (2)(z)f(z) + f(z)f ′(z)− zf ′(z)2 = 0. (31)

However, the family of all polynomials with rational coefficients is proved not to be coherent
in [11]. Before stating the main result of M. Boshernitzan and L. A. Rubel, let us mention two
important results concerning coherent families and sketch their proof.

Theorem 3.4
Let f be an analytic differentially algebraic function. Then, f satisfies an autonomous algebraic
differential equation. This means that there exist a non-zero polynomial Q(X0, . . . , Xn), with coef-
ficients in C, independent of z, such that:

Q(f(z), f ′(z), . . . , f (n)(z)) = 0. (32)

Proof. We can find a proof of this well-known result in [11], and a more detailed reasoning in [64].
Let us gather the explanations here. Let P (z,X0, . . . , Xn) be a non-zero polynomial such that
f(z) satisfies Equation (1). Without any loss of generality, we can assume that P is irreducible
in C[z,X0, . . . , Xn]. The goal is then to remove the variable z from the equation. The notion of
the resultant of two polynomials will solve the problem. Let us define the following operator on
polynomials S(z,X0, . . . , Xn) ∈ C[z,X0, . . . , Xn], over C[z,X0, . . . , Xn, Xn+1]:

D : S(z,X0, . . . , Xn) 7−→ DS(z,X0, . . . , Xn+1) = dS

dz
(z,X0, . . . , Xn)+

n∑
k=0

dS

dXk
(z,X0, . . . , Xn)Xk+1.
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The advantage of this definition is that for all S ∈ C[z,X0, . . . , Xn] we have:

DS(z, f(z), . . . , f (n+1)(z)) = d

dz
[S(z, f(z), . . . , f (n)(z))]

Hence, DP (z, f(z), . . . , f (n+1)(z)) = 0. Hence, if R is the resultant of the polynomials P and
DP with respect to the variable z, properties of the resultant guarantee that R ∈ C[X0, . . . , Xn+1]
and that there exist A,B ∈ C[z,X0, . . . , Xn+1] such that:

R = AP +B(DP ). (33)

Now, if we specialize (33) at (z, f(z), . . . , f (n+1)(z)), we obtain:

R(f(z), . . . , f (n+1)(z)) = 0. (34)

This provides an autonomous algebraic differential equation for f if we prove that R is a non-
zero polynomial. To do so, let us assume by contradiction that R = 0. Then, P and DP admit
a non-constant common factor. As P is irreducible, P | DP in C[z,X0, . . . , Xn+1]. Let T ∈
C[z,X0, . . . , Xn+1] such that:

(DP )(z,X0, . . . , Xn+1) = P (z,X0, . . . , Xn)T (z,X0, . . . , Xn+1).

Then, for all U(z) ∈ C[z], we have:

(DP )(z, U(z), . . . , U (n+1)(z)) = P (z, U(z), . . . , U (n)(z))T (z, U(z), . . . , U (n+1)(z)). (35)

Let U(z) ∈ C[z]. Let us writeQ(z, U(z), . . . , U (n+1)(z)) = Q̃(z), for all polynomialQ ∈ C[z,X0, . . . , Xn+1].
Then, by (35) we have:

P̃ ′(z) = ˜(DP )(z) = P̃ (z)T̃ (z). (36)

This provides:
P̃ (z) ∈ C. (37)

Now, an argument from linear algebra allows us to conclude that P ∈ C, which is a contradiction.
More precisely, if x0, x1 ∈ C, there is a surjective morphism of C-vector spaces:

φx0,x1 : C2n+2[z] −→ C2n+2

U(z) 7−→

 U(x0)
:

U (n)(x0)

 ,

 U(x1)
:

U (n)(x1)

 , (38)

where C2n+2[z] denotes the C-vector space of complex polynomials of degree less that or equal to
2n + 2. Then, for all x0 ∈ C and for all (z0, . . . , zn) ∈ Cn+1, there exists U(z) ∈ C2n+2[z] such
that (U(x0), . . . , U (n)(x0)) = (z0, . . . , zn) and (U(0), . . . , U (n)(0)) = (0, . . . , 0). Thus, Equation (37)
successively applied at (x0, U(x0), . . . , U (n)(x0)) and at (0, U(0), . . . , U (n)(0)) implies that

P (x0, z0, . . . , zn) = P (0, . . . , 0), ∀(x0, z0, . . . , zn) ∈ Cn+2.

This implies that P = P (0, . . . , 0) ∈ C and yields a contradiction. Theorem 3.4 is proved.

19



Another useful result about coherent families is that they are stable with respect to many
operations. This is the following statement, proved by M. Boshernitzan and L. A. Rubel in [11].

Theorem 3.5 (M. Boshernitzan and L. A. Rubel)
Let f, g be two analytic differentially algebraic functions. Let P,Q be non-zero differential algebraic
polynomials providing an autonomous differential algebraic relation for f and g respectively. Let us
consider the functions :

f + g, f − g, f × g, f/g, fg, fG, fg′, (39)
where G is a primitive of g, and the composition of applications is denoted multiplicatively.

Then, for every function h in this list, there exists a complex autonomous polynomial T (X0, . . . , Xn),
which depends only on P and Q (and not on f nor g) such that:

T (h(z), h′(z), . . . , h(n)(z)) = 0. (40)

In particular, coherent families are stable under the operations in (39). In other words, if F
and G are two coherent families, the family {f ∗ g | f ∈ F , g ∈ G } is a coherent family, where ∗
is a fixed operation of the set {+,−,×,÷}, or the operation of composition. And the two families
{fG | f ∈ F , G′ ∈ G }, {fg′ | f ∈ F , g ∈ G } are coherent families.

Proof. In order to explain the reasoning, we only sketch the proof for h = f + g (it is similar in the
other cases) and the case where P,Q are of order 1 (to reduce the notations). In other words, we
have the equations: P (f(z), f ′(z)) = 0 and Q(g(z), g′(z)) = 0, with P,Q ∈ C[X0, X1] autonomous.
As P is autonomous, if we derive the first equation with respect to the variable z, we obtain:

f ′′(z)S(P )(f) + P̃ (f(z), f ′(z)) = 0, (41)

where P̃ ∈ C[X0, X1], and S(P ) is the separant of the polynomial P . For a polynomial U(X0, . . . , Xn)
in C[X0, . . . , Xn], S(U) is defined by:

S(U)(X0, . . . , Xn) = dU

dXn
(X0, . . . , Xn),

where the derivation is made with respect to the biggest variable appearing in U . For every analytic
function φ, we let S(U)(φ) = S(U)(φ(z), φ′(z), . . . , φ(n)(z)). Similarly, we have:

g′′(z)S(Q)(g) + Q̃(g(z), g′(z)) = 0, (42)

where Q̃ ∈ C[X0, X1].
Let us first assume that S(P )(f) 6= 0 and S(Q)(g) 6= 0. Then, by (41) and (42), there exists a

non-zero rational fraction R ∈ C(Z0, . . . , Z3) such that:

h(2) = R(f, f ′, g, g′).

Note that R only depends on P and Q. But, g = h − f and g′ = h′ − f ′. Thus, there exists a
non-zero rational fraction H2 ∈ C[X0, . . . , X3]. Such that:

h(2)(z) = H2(f(z), f ′(z), h(z), h′(z)).

Note that H2 only depends on P and Q. We deduce the existence of non-zero rational fractions
H3, H4 ∈ C(X0, . . . , X3) such that:

h(3)(z) = H3(f(z), f ′(z), h(z), h′(z)).
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h(4)(z) = H4(f(z), f ′(z), h(z), h′(z)).

Note that H3, H4 only depend on P and Q.
Now, let us consider for every i ∈ {2, 3, 4}, Hi(X0, . . . , X3) as

Hi(X0, . . . , X3) ∈ K := [C(X2, X3)](X0, X1).

The transcendence degree of K over L := C(X2, X3) is equal to 2. Hence, there exists a non-
zero monic polynomial S(X2, X3)(Y0, Y1, Y2) ∈ L[Y0, Y1, Y2], where the Yi’s are formal variables for
i ∈ {0, 1, 2}, such that:

S(X2, X3)(H2(X0, . . . , X3), H3(X0, . . . , X3), H4(X0, . . . , X3)) = 0. (43)

Note that the coefficients of S are in L. Hence, S only depends on the Hi(X0, . . . , X3), that is,
only on P and Q.

Now, if we let X0 = f(z), X1 = f ′(z), X2 = h(z), X3 = h′(z) in (43), we get:

S(h(z), h′(z))(h(2)(z), h(3)(z), h(4)(z)) = 0.

Now, if we formally replace h(j)(z) by a variableXj , for every j ∈ {0, . . . , 4}, we find a polynomial
T ∈ C[X0, . . . , X4] such that

T (h(z), h′(z), h(2)(z), h(3)(z), h(4)(z)) = 0.

As, S ∈ L[Y0, Y1, Y2] is monic with respect to the variables Y0, Y1, Y2, T is a non-zero polynomial.
Finally, as S only depend on P and Q, the same is true for T . Hence, T provides a non-zero
autonomous differential algebraic relation for h(z), which only depends on P and Q.

Then, it remains to treat the case where S(P )(f) = 0, or S(Q)(g) = 0.
First, let us notice that there exist integers k, l ≥ 1 such that the iterates Sk(P ) and Sl(Q) are

non-zero constants. Indeed, the separant of a polynomial strictly reduces its total degree. Hence,
as polynomials, Sk(P ), Sl(Q) 6= 0. Thus, there exist k1 ≤ k − 1 and l1 ≤ l − 1 such that:

Sk1(P )(f) = 0 and Sk1+1(P )(f) 6= 0 (44)
Sl1(Q)(g) = 0 and Sl1+1(Q)(g) 6= 0.

Note that for all k1 ≤ k and l1 ≤ l, Sk1(P ), Sl1(Q) 6= 0, as polynomials. Besides, we notice that k, l
only depend on P and Q, but k1, l1 depend on f and g. The idea is then to apply the first part of
the proof to Sk1(P ), Sl1(Q), instead of P,Q respectively, but we need to get rid of the dependence
on f and g.

To do so, let us consider all the integers k1 ≤ k−1 and l1 ≤ l−1. As Sk1(P ) and Sl1(Q) are non-
zero polynomials, we can consider two formal variables f̃k1 , g̃k1 and assume that they formally satisfy
(44), for k1, l1. We deduce from the first part of the proof that there exists a differential algebraic
relation satisfied by the formal variable hk1,l1 = f̃k1 + g̃l1 , which only depends on Sk1(P ), Sl1(Q).
Let us note Tk1,l1 the associated non-zero autonomous differential algebraic polynomial, which only
depends on P,Q and k1, l1. Moreover, for every functions u, v which satisfy (44) for some k1, l1, we
have:

Tk1,l1(u+ v) = 0.
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Then, let us note:
T =

∏
k1≤k;l1≤l

Tk1,l1 .

Then, T is a non-zero autonomous differential algebraic polynomial which only depends on P and
Q. Moreover, T (f + g) = 0 and this concludes the proof.

Let us notice that if f is an invertible analytic function which is differentially algebraic, then
f−1 is also differentially algebraic. Indeed, for all n ∈ N,

(
f−1)(n) (z) is a rational fraction of

f(w), f ′(w), . . . , f (n)(w), where w = f−1(z). But f is differentially algebraic. Therefore, the family
{f (n)(w)}n has a finite transcendence degree over C(z), and so has the family

{(
f−1)(n) (z)

}
n
.

We are finally able to state the main result of M. Boshernitzan and L.A. Rubel [11], which links
coherent families to the algebraic properties of Schröder, Böttcher and Abel functions.

Theorem 3.6 (M. Boshernitzan and L.A. Rubel)
Let f be a Schröder, Böttcher or Abel function. Let R(z) be the associated rational fraction of degree
at least two. Then, f is differentially algebraic if and only if the family {Rn(z)}n∈N is coherent.

The proof of Theorem 3.1 only uses the direct implication of Theorem 3.6, that is why we will
only reproduce this part of the proof here.

Proof of the direct implication of Theorem 3.6. Let us assume that f is differentially algebraic. The
goal is to prove that the family {Rn(z)}n is coherent. First, let us assume that f is a Schröder
function. Then, g = f−1 is differentially algebraic and satisfy Equation (S0). Thus, we have:

R = g−1(sz)g. (45)

Then, for all n ∈ N:
Rn = g−1(snz)g.

We have seen that the family {snz}n is coherent (see (31)). Hence, by Theorem 3.5, {Rn}n is
coherent.

If f is a Böttcher function, then, g = f−1 is differentially algebraic and satisfy equation (B0).
Similarly, we obtain

Rn = g−1(zd
n

)g.

We have seen that the family {zdn}n is coherent (see (31)). Hence, by Theorem 3.5, {Rn}n is
coherent.

Finally, if f is an Abel function, we find:

Rn = f−1(z + n)f. (46)

But the family {z + n}n is coherent because {n}n is (see (31)) and the coherence is stable under
addition by Theorem 3.5. Hence, again by Theorem 3.5, {Rn}n is coherent.
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3.4 Third ingredient: the theory of P. Fatou and G. Julia
The ingredients from the theory of P. Fatou and G. Julia needed in the proof of Theorem 3.1 are
stated as Theorems 3.8 and 3.9 below. Let R(z) be a rational fraction of degree at least two. Let
F (R) denote the Fatou set of R. Recall that it is the open set of all the elements z0 ∈ Ĉ for which
the family {Rn(z0)}n is normal in a neighbourhood of z0. A fundamental result about normal
families is the following normality criterion from P. Montel [52].

Theorem 3.7 (P. Montel)
Let D be a domain in Ĉ. Let Ω = Ĉ \ {0, 1,∞}. Then, the family

F = {f : D −→ Ω | f is analytic over D}

is normal over D.

Among other things, this allows the author to prove various theorems from É. Picard. One of
them states that an analytic function on a punctured neighbourhood of the origin, which admits
an essential singularity at 0, takes all the values of Ĉ, except at most two.

Now, let J(R) = Ĉ \ F (R) denote the Julia set of R. Remind that J(R) is a closed compact
subset of Ĉ, which is non empty and perfect. The Fatou set, however, can be empty, as we will
see in Theorem 3.8. Let us note that the Fatou and Julia sets are compatible with the notions of
iteration and conjugation via a Möbius transformation g. Indeed, we can prove that:

F (Rn) = F (R), J(Rn) = J(R),∀n ∈ N. (47)

Moreover, if g is a Möbius transformation and S = gRg−1, we have:

F (S) = g(F (R)), J(S) = g(J(R)). (48)

Now, let us discuss the two results used in the proof of Theorem 3.1. The first one deals with
the cases where the Fatou set is empty or not.

Theorem 3.8
Let R(z) be a rational fraction of degree at least two.

1. Assume that R(z) admits a non repelling fixed point α. If α is irrationally indifferent, as-
sume further that the associated Schröder equation (S) admits a convergent solution in a
neighbourhood of α. Then F (R) 6= ∅.

2. Assume that R(z) is the rational fraction of the Schröder’s equation associated with one of
the functions ℘(αzr +β), ℘2(αzr +β), ℘3(αzr +β), or ℘′(αzr +β) which appears in the first
point of Theorem 3.1. Then F (R) = ∅.

The second result used by P.-G. Becker and W. Bergweiler to prove Theorem 3.1 is the following.

Theorem 3.9
Let R(z) be a rational fraction of degree d at least two. The set of all the repelling fixed points of
all the iterates Rn(z), n ∈ N, is dense in J(R).

Let us sketch the proof of Theorem 3.8 (see details in [6]).
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Proof of Theorem 3.8. First, we can prove that an attracting or super-attracting fixed point of
R(z) belongs to F (R). Indeed, based on the Taylor development of R, there exists σ < 1 and a
neighbourhood D of the fixed point α such that:

|R(z)−R(α)| ≤ σ|z − α|, ∀z ∈ D

if α is attracting; and even:

|R(z)−R(α)| ≤ σ|z − α|2, ∀z ∈ D,

if α is super-attracting. Secondly, if α is rationally indifferent, α ∈ J(R). This is proved by P. Fatou
[26] and G. Julia [40] (see also [6, Theorem 6.5.1]). But the Leau-Fatou Flower theorem implies the
existence of domains L1, . . . , Lk called the petals of R such that, for all j ∈ {1, . . . , k}, α belongs to
the boundary of Lj , R(Lj) ⊂ Lj and the restriction to Lj of Rn converges uniformly to α on Lj ,
when n tends to infinity. This latter property shows that each petal is included in F (R). Hence,
F (R) is not empty.

Finally, if α is an irrationally indifferent fixed point of R(z), we can use a theorem stated in [6]
which establishes the following equivalence, valid for an indifferent fixed point of R(z):

R(z) is linearizable in a neighbourhood of α⇔ α ∈ F (R). (49)

We say that R(z) is linearizable in a neighbourhood D of α if there exists an invertible analytic
function g over D such that R is locally conjugated via g to a function of the form:

h(z) = α+ (z − α)h′(α).

But this is precisely the case for R, which is conjugated, via the solution of the associated Schröder’s
equation (S), to h(z) = sz. Then α ∈ F (R).

Besides, for the second part of the theorem, we only sketch the proof for the Weierstrass function
℘(z), following [6, p. 74]. Recall that this function is periodic, that is, satisfies (27). Moreover,
this function satisfies the following Schröder’s equation:

℘(2z) = R(℘(z)), (50)

for a certain rational fraction R(z). This is the duplication formula for elliptic curves (see for
example [72, page 54, page 170] and [42, Chapter 1]). Now, let D be a disc in C and let U = ℘−1(D).
Let φ(z) = 2z. Then, φn(U) = 2nU . Hence, for N big enough, 2NU will contain a period
parallelogram of the lattice Λ associated with ℘. This means that the values that ℘ will take in
2NU are exactly the one it takes on C. But it is known, as a consequence of the open mapping
theorem, that ℘(C) = Ĉ. Hence, using (50), we obtain:

RN (D) = RN (℘(U)) = ℘(2NU) = Ĉ.

This implies that {Rn}n is not equicontinuous over D. Indeed, the local behaviour of the iterates
does not respect the proximity of antecedent points, because D is sent onto the whole Riemann
sphere by RN . As D is arbitrary, we conclude that {Rn}n is not equicontinuous over any open
subset of C. This implies that J(R) = Ĉ.
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Note that, as quickly mentioned in Section 2.2, the case of an irrationally indifferent fixed point
α was proved by C. L. Siegel in 1942 for particular cases of α, called diophantine fixed points.

Now, let us reproduce the proof of the second result, as detailed in [6, Theorem 6.9.2]. First let
us recall the following facts. Let R(z) be a rational fraction of degree d ≥ 2. Then, R(z) is a d-fold
map of Ĉ onto itself. That is, for all w ∈ Ĉ, the equation R(z) = w admits exactly d solutions
in Ĉ, when counting multiplicities. Now, we say that w is a critical value of R(z), if there exists
z0 ∈ Ĉ such that R(z0) = w and if there is no neighbourhood of z0 in which R(z) is injective. But
there are only finitely many critical values of R(z) in Ĉ. Indeed, for an element x ∈ Ĉ, there exists
a neighbourhood of x in which R(z) is injective if R′(z) has neither a zero nor a pole at x. When w
is not a critical value of R(z), there exists exactly d pairwise distinct elements zi ∈ Ĉ, i = 1, . . . , d
such that R(zi) = w, for every i ∈ {1, . . . , d}.

Proof of Theorem 3.9. The first part of the proof consists in showing that J(R) is contained in the
topological closure of the set of all the fixed points of all the Rn(z). Then, by [6, Theorem 9.6.1],
the set of all the non repelling fixed points of all the Rn is finite. We deduce that J(R) is contained
in the topological closure of the set P of all the repelling fixed points of all the Rn(z). Finally, as,
for every integer n, each repelling fixed point of Rn(z) is contained in the closed set J(Rn) = J(R),
we have that J(R) is the topological closure of P. This gives the result of Theorem 3.9.

It thus remains to show that J(R) is contained in the topological closure of the set of all the
fixed points of all the Rn(z). It suffices to consider an open set N of Ĉ such that N ∩ J 6= ∅, and
prove that N contains a fixed point of one of the Rn(z). Let w ∈ N ∩ J 6= ∅. We may assume
that w is not a critical value of R2. Indeed, the number of such values is finite and we may thus
find a non-critical value of R2 in a neighbourhood of w in N ∩ J . Then, R−2(w) contains at least
four distinct points wj , j = 1, . . . , 4. Indeed, the fact that d ≥ 2 implies that the degree of R2 is
more than or equal to four. At least three of these points, say w1, w2, w3 are distinct from w. Then,
we construct three neighbourhoods Ni of wi, i = 1, 2, 3, whose topological closures are pairwise
disjoint, and a neighbourhood N0 ⊂ N of w, disjoint from every Ni and such that R2 : Ni −→ N0
is a homeomorphism, with reciprocal Si, for every i ∈ {1, . . . , 3}. But {Rn(z)}n is not a normal
family on N0, because w ∈ N0 ∩ J(R). Then [6, Theorem 3.3.6] (which is a corollary of Theorem
3.7) gives the existence of z0 ∈ N0, n ≥ 1 and i ∈ {1, . . . , 3} such that:

Rn(z0) = Si(z0).

We deduce that R2+n(z0) = R2(Si(z0)) = z0. Hence z0 is a fixed point of an iterate of R(z),
contained in N .

Note that P. Fatou [26] and G. Julia [40] proved the finiteness of the sets of attracting and
rationally indifferent fixed points of all the Rn(z).

3.5 The proof of Theorem 3.1
In this section, we reproduce the proof of Theorem 3.1 established in [8] by P.-G. Becker and W.
Bergweiler . We give detailed explanations about the way that the three ingredients exposed earlier
merge. This is a beautiful illustration of the power of the interactions between distinct domains
of mathematics. As mentioned before, the statement of Theorem 3.1 belongs to the theory of
hypertranscendence of solutions of functional equations. The proof of Theorem 3.1 uses previous
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results of hypertranscendence and coherent families, along with the theory of iteration of a rational
fraction and analytic properties of the sets of Fatou and Julia.

Proof of Theorem 3.1. We will use the notations of (8) and the framework of Section 3.1. Let R(z)
be a rational fraction of degree at least two, which admits 0 as a fixed point. According to the
nature of this fixed point, we let f be either a Schröder solution of SR,0 (recall that we assume
that this equation admits a convergent solution), a Böttcher solution of BR,0, or a Abel solution of
AR,0. Let us assume that f is differentially algebraic. Our goal is to prove that f cannot be a Abel
function and that f is in the list 1 or 2 of the statement of Theorem 3.1, depending on whether f
is a Schröder or Böttcher function.

Let us immediately remark that Theorem 3.6 guarantees that the family {Rn(z)}n is coherent.
To begin with, if 0 is repelling (that is, f is a Schröder function), we can apply Theorem 3.2 and
get that f is in the list of the first point of Theorem 3.1.

Now, let us deal with the case where 0 is not repelling. The goal is to reduce this case to
the repelling one. Let us first notice that Theorem 3.8 implies that F (R) 6= ∅. Moreover, by
Theorem 3.9, the set of all the repelling fixed points of all the iterates Rn(z) are dense in J(R).
As J(R) is always a non-empty set [25], we deduce that there exist w ∈ Ĉ and k ∈ N such that
w is a repelling fixed point of Rk(z). We may then consider a Schröder solution φ of SRk,w. But
{
(
Rk
)n}n is coherent, as a subfamily of the coherent family {Rn(z)}n. Hence, by Theorem 3.6, φ

is differentially algebraic.

Then, Theorem 3.2, implies that there exists a Möbius transformation g(z) such that g−1Rkg
is one of the rational fractions which appear in the first point of Theorem 3.1 (with dk instead of
d). Let us note S(z) = g−1Rkg. By (47) and (48), the fact that F (R) 6= ∅ implies that F (S) 6= ∅.

Hence, by Theorem 3.8, S(z) ∈ {zdk

, z−d
k

, Tdk ,−Tdk}. Besides, as 0 is a non repelling fixed
point of R(z), as noticed in Section 3.4, g−1(0) is a non repelling fixed point of S(z). But z−dk

does not admit any such fixed points, and all the non repelling fixed points of zdk , Tdk or −Tdk are
super-attracting (a computation shows that a fixed point of a Tchebychev polynomial distinct from
∞ is repelling and that ∞ is a super-attracting fixed point). Hence, S(z) ∈ {zdk

, Tdk ,−Tdk}, and
g−1(0) is a super-attracting fixed point of one of these three polynomials. Note that, by Section
3.4 again, this implies that 0 is a super-attracting fixed point of Rk(z) and R(z).

We deduce that f is a solution of BR,0. Iterating this equation, we see that f is a solution of
BRk,0. Now, by (8), g−1f is a solution ψ of BS,g−1(0). But the fact that S(z) ∈ {zdk

, Tdk ,−Tdk}
guarantees, via Theorem 3.3 that ψ is algebraic and is a Möbius transformation or a Möbius
transformation of one of the functions of the list of the second point of Theorem 3.1. As f = gψ,
we deduce that f is a Möbius transformation or a Möbius transformation (composition with the
Möbius transformation g) of a function of the list of the second point of Theorem 3.1.

Hence, f(z) is solution of BM,0, where M(z) is of the form of the rational fractions appearing
in the second point of Theorem 3.1. As f(z) is solution of BR,0 and BM,0, we have R = M and
R(z) is of the form of the rational fractions appearing in the second point of Theorem 3.1.

To conclude, we have proved that f is either a Schröder or Böttcher function (thus f is not a
Abel function). Moreover, we have proved that, when f is a Schröder function, f is of the form
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described in the first point of Theorem 3.1, and when f is a Böttcher function, f is of the form
described in the second point of Theorem 3.1. Theorem 3.1 is thus proved.
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